An Econometric Analysis of Inflation and Economic Growth: A Case Study of Canada and UK

Sajeev U

Assistant Professor of Economics, P.G. Department of Economics, Govt. College Malappuram, Munduparamba PO Malappuram District, Kerala-676509

The work is submitted to the University of Science and Technology, Lille 1, France for the M.A Economics of International Trade and European Integration.

ABSTRACT

This paper is an econometric analysis of the relationship between inflation and economic growth. The inflation affects economic growth negatively, i.e., it reduces economic growth. But there is a question whether inflation is always harmful to economic growth for an economy or not? For analysing the relationship between inflation and economic growth, i have been taken Canada and UK from the G7 countries. The study support the theory developed by Tobin in 1972 that, inflation can lead to a higher growth rate through the difference between nominal and real variables. According to that, higher inflation can allow firms to make adjustments on real wages, that can't do for nominal wages.

INTRODUCTION

In the economic theory, many economists have tried to explain the link between evolution of prices and economic growth. According to Keynes, the stimulus of the economic growth is the effective demand, that is investment and the demand for consumption goods. So, if there is a lower growth, it's because of a lower demand. Hence, the policies to apply are budgetary and monetary ones. The budgetary policy consists of injecting money in the economy to maintain the activity. The mechanism that takes place is called the multiplier. The mean of the monetary one is to increase the supply of money, to allow more credits for the investment and the consumption.

However, for the monetarists, as Friedman for instance, these policies are inefficient, and even dangerous for the economy. Indeed, for them, inflation comes from the enhancement of the money supply.

Fisher identity: $(1+i) = (1+r) ((P_{t+1}-P_t)/P_t)$ $(P_{t+1}-P_t/P_t) = (1+i) / (1+r)$

We see that the evolution of the prices depends on the nominal and real interest rate. The interest rate depends, in turn, on the supply of money: when the money supply raises, the demand for credits increases, so the demand of money. Thus, the interest rate enhances, which would imply lower investment and consumption. So, inflation slows down economic growth.

That's why the European Central Bank has as a target to keep stable the inflation, which means that the ECB can't play with the money supply.

From a Keynesian point of view, it seems to be a trade-off between unemployment and inflation, as it's been suggested by the Phillips curve: authorities have to choose between struggling against unemployment, which imply expansionary monetary and budgetary policies, or keeping relatively constant the evolution of prices, which underlies unemployment, and threaten economic growth.

So, the aim of this work is to verify the nature of the link between inflation and economic growth. First, we will explain the econometric model and the assumptions. Then, we will explain the results of the regressions that have been done.

THE ECONOMETRIC MODEL

The work is based on a dataset from the OECD and lists the real GDP per capita as well as the consumer prices index for the countries member of the G7, from 1948 to 1999.

However, we face one problem: some observations are missing on the dependent variable, RGDP, and on the Consumer price index.

To decide whether we can drop some of them, we have to know the reason that explains these missing years. Indeed, if this reason is correlated with ε_{it} , the estimation will be biased.

But here it's not the case: some observations are not missing because the countries don't exist anymore, but because the value was not available after the WW2 as most of the countries members (the European ones) of the G7 had to be rebuilt. So, we can drop the years 1948-1949 and from 1993 to work on a data from 1950 to 1992.

So, the data set lists the following variables:

RGDP is the real GDP per capita and is the dependent variable

CPI is the consumer index prices (base 100 in 1995 for all the countries)

Although there are seven countries, we will choose two of them (Canada and UK) to make a regression on two time series. Indeed, we suppose that the relationship between economic growth and inflation should be the same among similar economies as it's the case within the members of the G7.

To form our model, we will define one new variable from the data: log (RGDP)_t, which is the logarithm of growth rate of the real GDP per capita

Hence we will work on the following model: $log (RGDP)_t = \beta_0 + \beta_1 log (CPI)_t + \epsilon_t$ Where: ϵ_t is the random term . β_0 is the intercept

The model is a log-log one because taking the log of the dependent variable permits to obtain a constant weight of the inflation on the economic growth. The logarithmic form of the model is useful as the relation between inflation and growth is not supposed to be linear.

This model will be estimated using the softwares TSP and EVIEWS. As we want to analyse the relationship between the economic growth and the evolution of prices, we will test the following null hypothesis: $H_0: \beta_1 < 0$

It means that with the model, we'll test the assumption that there is a negative relationship between inflation and growth. So, inflation reduces growth.

Hence, we will also check the non-monotonicity of this relationship: does inflation is always harmful for the economic growth? Or is it possible to allow a higher inflation in order to be free to lead effective policies to boost the activity?

THE RESULTS OF THE ESTIMATIONS

Canada

From a regression by Ordinary Least Squares method, we have the following results: The equation: log (RGDP) =7.52027+0.507468 log (CPI) + ϵ_t

		P-value
mean of		
log(RGDP)	9.26631	
SSR	0.395895	
R-squared	0.918202	
DW test	0.129351	<0.000
JB test	3.28080	0.194

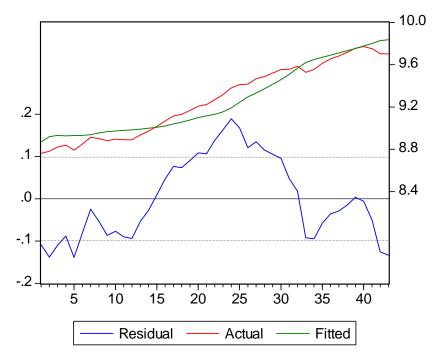
The estimated coefficient of the explanatory variables means that 0.51 % of the change in the inflation rate explains the changes in the economic growth rate.

The table shows that the model seems reliable as the R-squared is close to 1. Nonetheless, the SSR means there's around 40% of difference between the actual and the estimated dependent variable: the model is underestimated.

But to be sure, we have to make a diagnostic test to check if the Gauss-Markov hypotheses are fulfilled. First, we have to check if there is heteroscedasticity. To do so, we take a look at the Breusch-Pagan value: Then, the Durbin-Watson value indicates if there is serial correlation (or autocorrelation) but we can also make a Breusch-Godfrey LM test:

Breusch-Godfrey Serial Correlation LM Test:				
F-statistic	231.5460	Probability		0.000000
Obs*R-squared	36.66590	Probability		0.000000
Test Equation:				
Dependent Variable: RES	SID			
Method: Least Squares				
Date: 02/01/07 Time: 22	1:07			
Presample missing value	lagged residu	als set to zero.		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.041722	0.032273	1.292761	0.2035
LOG(CPI)	-0.012982	0.009231	-1.406391	0.1673
RESID(-1)	0.949494	0.062398	15.21664	0.0000
R-squared	0.852695	Mean deper	ndent var	-1.54E-15
Adjusted R-squared	0.845330	1		0.097088
S.E. of regression	0.038183	1		-3.625645
Sum squared resid	0.058317	Schwarz cr	iterion	-3.502771
Log likelihood	80.95137	F-statistic		115.7730
Durbin-Watson stat	1.272327	Prob(F-statistic) 0.000000		0.000000

Interpretation of the Breusch-Goldfeld and the DW Test


The Breusch-Goldfeld estimated value shows that there is a correlation between present residuals and previous year residuals.

The DW test shows that, there is an autocorrelation among the residuals so we cannot reject the hypothesis. We also have to verify if the normality of ε_t is respected or not as it's a condition of unbiasedness. Here, we see that the P-value of the JB test is 0.194. We accept the null hypothesis that the residuals don't follow a normal distribution if the P-value is higher than 0.5. So, we can reject the null hypothesis:

$\hat{e}_t \sim N(0; \sigma^2)$

However, a time series can generate some other problems. Indeed, it can be a seasonality problem, which is not the case here as we have yearly observations and that they concern economic growth.

A second difficulty is the non-stationarity. To check it, we can take a look at the following graph, which shows the evolution of log (RGDP) (its fitted and actual values):

On this graph, we see that both fitted and actual values of log (RGDP) follow a trend, which indicates that this time series is not stationary. We can also test whether it's stationary by operating the Dickey-Fuller test. So, these are the results of the test:

Null Hypothesis: LOG(RGDP) has a unit root		
Exogenous: Constant		
Lag Length: 0 (Automatic based on SIC, MAXLAC	i=9)	
	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic	-0.796438	0.8098
Test critical values: 1% level	-3.596616	

5% level

10% level

*MacKinnon (1996) one-sided p-values.

If we look at the t-statistic of the DF test, we see that its absolute value is lower for each critical value level. This confirms that there is a unit root. To cope with this problem, we make an Augmented Dickey-Fuller test that will compute the first difference of the model to make the time series stationary:

-2.933158

-2.604867

Null Hypothesis: D(LOG(RGDP)) has a unit root Exogenous: Constant Lag Length: 0 (Automatic based on SIC, MAXLAG=9)				
t-Statistic Prob.*				
Augmented Dickey-Fuller test statistic -5.019568 0.0002			0.0002	
Test critical values:	1% level	-3.600987		
	5% level	-2.935001		
	10% level	-2.605836		

*MacKinnon (1996) one-sided p-values.

We observe that here, the absolute value of the t-statistic is always higher than the critical values. So, we can reject the null hypothesis that d log (RGDP) has a unit root.

Therefore, our model integrates now the first difference:

 $\begin{array}{l} d \, \log(RGDP)_t = \beta_0 + \beta_1 \, d \, \log(CPI)_t + \epsilon_t \\ \text{Thus, we do an estimation of the new model:} \\ d \, \log(RGDP)_t = 0.017699 - 0.792179 \, d \, \log(CPI)_t + \epsilon_t \end{array}$

Mean of d	
log(RGDP)	-0.000505
R²	0.392486
SSR	0.035230
DW test	1.924926

We see that the R^2 of the new model is quite low, but the sum of squared residuals is low too, which means that the estimation is close to the actual value.

In addition, we see that this model exhibits a negative relationship between inflation and economic growth.

Explain the DW Test.

Here, the DW value lies between du and 4-du so the null hypothesis can be rejected and there is no correlation among the residuals.

Then, we have to identify the process that generates the series. To do so, we have to look at the correlogram of the first differentiated model:

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. **	. **	1	0.205	0.205	1.8914	0.169
.*	.* .	2	-0.108	-0.157	2.4325	0.296
. *.	. *.	3	0.066	0.132	2.6372	0.451
. .	.* .	4	-0.016	-0.088	2.6503	0.618
.* .	.* .	5	-0.108	-0.061	3.2314	0.664
.* .	.* .	6	-0.143	-0.135	4.2834	0.638
. .	. *.	7	0.063	0.125	4.4926	0.722
. .	. .	8	0.038	-0.040	4.5705	0.802
. *.	. *.	9	0.085	0.153	4.9784	0.836
. *.	. .	10	0.077	-0.024	5.3235	0.869
. .	. .	11	-0.049	-0.045	5.4681	0.906
. .	. .	12	-0.024	-0.024	5.5043	0.939
. .	. .	13	-0.017	0.007	5.5222	0.962
.* .	.* .	14	-0.082	-0.076	5.9631	0.967
.* .	. .	15	-0.073	0.001	6.3323	0.974
. .	. .	16	-0.008	-0.030	6.3364	0.984
.* .	.* .	17	-0.061	-0.089	6.6078	0.988
** .	.* .	18	-0.190	-0.185	9.3890	0.950
.* .	.* .	19	-0.173	-0.147	11.795	0.894
. .	. .	20	-0.057	-0.056	12.065	0.914

This shows that the partial autocorrelation goes towards zero more fastly than the autocorrelation: on the table we see that the PAC is really close to zero (0.001 at the 15^{th} lag) before the autocorrelation, which means that there is an auto-regressive process.

So now, we can estimate the parameters. We know that there is an auto-regressive process, so the model is: $(CPI)_t - \gamma_1(CPI)_{t-1} - \gamma_q(CPI)_{t-p} = C(L)CPI_t = \mu + \epsilon_t$ And we can use the ordinary least squares method:

Mean of d	
log(RGDP)	9.26631
R ²	0.985769
SSR	0.069740
DW test	1.20644
Rho	0.969356

Hence, our final model is:

d log (RGDP)=7.93007+0.371462 d log(CPI)

The model is reliable as the R^2 is very close to unity and that the sum of squared residuals is quite low. In addition, RHO is quite close to 1, which means that this is a good estimation.

Interpretation of DW

The DW value is greater than dL so the null hypothesis there is no positive correlation among residuals so it can be rejected.

To conclude on the case of Canada, we see that the null hypothesis can be rejected, as $\beta_1>0$: there is a positive impact of inflation on growth.

United Kingdom:

There is a table to sum up our results for the estimated model: log (RGDP)= $8.23825+0.275717 \log (CPI)+\epsilon_t$

		P-value
mean of		
log(RGDP)	9.05736	
SSR	0.286203	
R-squared	0.905345	
DW test	0.130615	<0.000
JB test	1.44240	0.486

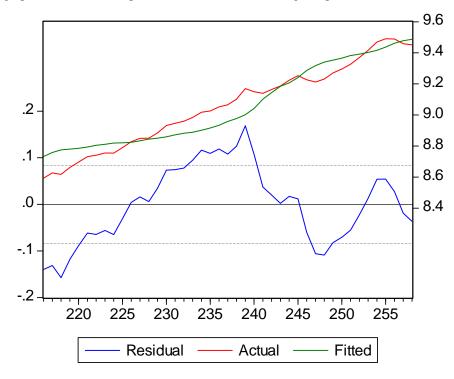
For the United Kingdom, there is as well a positive relationship between evolution of prices and economic growth: the evolution of economic growth is explained by 28 % by the inflation rate.

The R^2 is equal to 91 % and there is a difference of almost 29 % between the actual and the fitted value, so the model is reliable.

Then, according to the P-value of the JB test, the residuals follow a normal distribution as the P-value is lower than 0.5.

We have to check for the autocorrelation:

See also the DW (to Interpret)


The DW value is less than dL therefore; the null hypothesis that there is no positive auto-correlation among the residuals it can be rejected.

Breusch-Godfrey Serial Correlation LM Test:				
F-statistic	172.6127	Probability		0.000000
Obs*R-squared	34.91017	Probability		0.000000
Test Equation: Dependent Variable: RE Method: Least Squares Date: 02/03/07 Time: 2 Presample missing value	0:58	als set to zero		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.008097	0.019016	0.425783	0.6725
LOG(CPI)	-0.002983	0.006118	-0.487612	0.6285
RESID(-1)	0.903807	0.068792	13.13822	0.0000
R-squared	0.811864	BS.D. dependent var0.0825OAkaike info criterion-3.705OSchwarz criterion-3.582F-statistic86.306		4.57E-16
Adjusted R-squared	0.802458			0.082549
S.E. of regression	0.036690			-3.705434
Sum squared resid	0.053845			-3.582560
Log likelihood	82.66684			86.30636
Durbin-Watson stat	1.076841			0.000000

Interpretation of the Breusch-Goldfeld Test

The probability of the coefficients of the previous residuals is almost zero. So, there is a positive aut-correlation between present residuals and previous residuals.

The following graph shows that the dependent variable exhibits a long-run pattern.

To be sure that there is a non stationary process, we have to perform a Dickey-Fuller test:

Null Hypothesis: LOG(RGDP) has a unit root Exogenous: Constant Lag Length: 0 (Automatic based on SIC, MAXLAG=9)				
t-Statistic Prob.*				
Augmented Dickey-Fu	Augmented Dickey-Fuller test statistic-2.2935230.1786			
Test critical values:	1% level	-3.592462		
	5% level	-2.931404		
10% level -2.603944				

This test confirms the existence of a unit root because the t-statistic has an absolute value that is lower than the critical values.

That's why we have to make again this test on the first difference of the model:

Null Hypothesis: D(LOG(RGDP)) has a unit root
Exogenous: Constant
Lag Length: 0 (Automatic based on SIC, MAXLAG=9)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-6.552728	0.0000
Test critical values:	1% level	-3.592462	
	5% level	-2.931404	
	10% level	-2.603944	

*MacKinnon (1996) one-sided p-values.

We see that now the absolute value of the t-statistic is clearly greater than the critical values. Therefore, we have to do an estimation of the new model:

d log (RGDP)= -0.004071-1.022994 d log(CPI)+ ϵ_t

Mean of d	
log(RGDP)	-0.000433
R²	0.511546
SSR	1.097021
DW test	1.012220

The R^2 is just around 50 % and the sum of squared residuals is very high, which means that the model is not really reliable.

Interpret the DW

The DW value is less than dL therefore the null hypothesis that there is no positive auto-correlation among the residuals so it can be rejected.

The second step of the analysis is to know which process generates the series: is it an auto-regressive or a moving average one?

Date: 02/06/07 Time: 13:49 Sample: 216 258 Included observations: 43

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. .	. .	1	-0.009	-0.009	0.0035	0.953
. .	. .	2	0.025	0.025	0.0342	0.983
. .	. .	3	-0.027	-0.026	0.0691	0.995
. .	. .	4	-0.016	-0.017	0.0812	0.999
. .	. .	5	-0.016	-0.015	0.0940	1.000
. .	. .	6	0.009	0.009	0.0984	1.000
. .	. .	7	-0.004	-0.003	0.0991	1.000
. .	. .	8	0.011	0.010	0.1062	1.000
. .	. .	9	-0.018	-0.018	0.1245	1.000
. .	. .	10	-0.018	-0.019	0.1441	1.000
. .	. .	11	-0.007	-0.006	0.1472	1.000
. .	. .	12	0.011	0.011	0.1543	1.000
. .	. .	13	-0.019	-0.020	0.1781	1.000
. .	. .	14	-0.033	-0.036	0.2513	1.000
. .	. .	15	-0.001	-0.000	0.2513	1.000
. .	. .	16	-0.002	-0.001	0.2516	1.000
. .	. .	17	-0.011	-0.013	0.2609	1.000
. .	. .	18	-0.022	-0.025	0.2994	1.000
. .	. .	19	0.003	0.002	0.3004	1.000
. .	. .	20	-0.017	-0.017	0.3253	1.000

We see here that autocorrelation moves slowly towards zero but is never equal to zero: we face an autoregressive process. As in the case of Canada, we can use the OLSQ method. And we obtain the final model: d log(RGDP)=8.49604+0.170977 d log(CPI)

Mean of d	•
log(RGDP)	9.05736
R ²	0.975069
SSR	0.076404
DW	1.15918
RHO	0.987446

We notice that the model is reliable because the R^2 is almost equal to 1 and that the SSR is low. Moreover, rho is very close to unity, which is another indicator of goodness-of-fit.

Interpret DW

The DW value is less than dL therefore the null hypothesis that there is no positive auto-correlation among the residuals so it can be rejected.

Conclude on: $H_0: \beta_1 < 0$

CONCLUSION

The two examples on which we have worked exhibit a positive link between these two variables. This result is not the expected one: according to many economists, inflation must be struggled. This theory is seen reliable by the governments, as we can see it at the European level for instance.

Hence, this result, emphasized by many others, put this statement into question, as well as the policies that aim to a stabilization of the inflation are wrong: according to the empirical works, trying to slow down the evolution of prices means reducing the economic growth rate.

This can support the theory developed by Tobin in 1972: inflation can lead to a higher growth rate through the difference between nominal and real variables. According to him, higher inflation can allow firms to make

adjustments on real wages, adjustments that they can't do for nominal wages: with an increasing inflation, real wages are reducing. Furthermore, the real interest rates decrease, which means that the investment can be enhanced. So, the growth increases. In addition, for him, zero inflation doesn't mean that uncertainty will be reduced. (See Romer book p550)

Still, there are some limits to our work. It is based only on one independent variable (consumer prices index), which can bias the result.

However, some others studies has been made, allowing for some other variables such as public expenditure, direct foreign investment, gross investment or fertility rate for example, which gives a more complete idea of all the factors that can influence growth.

[_we don't allow for the aim of this inflation: is it the result of policies which tend to lead to a social improvement? So, that is why it's difficult to draw any sharp conclusion.

_forecasting about the policy of the European Central Bank: so even if as we showed, there's a negative relationship between inflation and growth, there should also be a positive one. That is that searching to maintain constant the general increase of prices can lead to a decrease of economic growth, so to an enhancement of unemployment.]

Appendix

I. PART ON CANADA:

The OLSQ estimation for Canada

Dependent Variable: LOG(RGDP) Method: Least Squares Date: 02/01/07 Time: 20:44 Sample: 1 43 Included observations: 43

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(CPI)	7.520274 0.507468	0.082756 0.023655	90.87243 21.45314	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.918202 0.916207 0.098265 0.395896 39.77345 0.129351	Mean depen S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	ent var criterion terion	9.266310 0.339465 -1.756905 -1.674988 460.2374 0.000000

The Dickey-Fuller test

Null Hypothesis: LOG(RGDP) has a unit root						
Exogenous: Constant						
Lag Length: 0 (Automatic based on SIC, MAXLAG=9)						
t-Statistic Prob.*						
Augmented Dickey-Fuller test statistic -0.796438 0.8098						
Test critical values: 1% level	-3.596616					

	5% level 10% level		-2.933158 -2.604867			
*MacKinnon (1996) one-sided p-values.						
Augmented Dickey-Fulle	r Test Equation	on				
Dependent Variable: D(L	OG(RGDP))					
Method: Least Squares						
Date: 02/01/07 Time: 20):53					
Sample (adjusted): 2 43						
Included observations: 42	2 after adjustn	nents				
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
LOG(RGDP(-1))	-0.011121	0.013963	-0.796438	0.4305		
С	0.125359	0.129328	0.969311	0.3382		
R-squared	0.015610	Mean deper	ndent var	0.022424		
Adjusted R-squared	-0.008999	S.D. depend	lent var	0.029960		
S.E. of regression	0.030094	Akaike info	criterion	-4.122524		
Sum squared resid	0.036226	Schwarz cri	terion	-4.039778		
Log likelihood	88.57300	F-statistic		0.634314		
Durbin-Watson stat	1.583329	Prob(F-stati	stic)	0.430479		

The OLSQ estimation for the new model

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG(RGDP),2) Method: Least Squares Date: 02/01/07 Time: 20:55 Sample (adjusted): 3 43 Included observations: 41 after adjustments							
Variable Coefficient Std. Error t-Statistic Prob.							
D(LOG(RGDP(-1))) C	-0.792179 0.017699	0.157818 0.005932	-5.019568 2.983858	0.0000 0.0049			
R-squared0.392486Mean dependent var-0.000505Adjusted R-squared0.376909S.D. dependent var0.038076S.E. of regression0.030055Akaike info criterion-4.123996Sum squared resid0.035230Schwarz criterion-4.040407Log likelihood86.54191F-statistic25.19607Durbin-Watson stat1.924926Prob(F-statistic)0.000012							

The estimation of the parameters with AR1 command (TSP)

FIRST-ORDER SERIAL CORRELATION OF THE ERROR

Objective function: Exact ML (keep first obs.) Working space used: 947 STARTING VALUES

C LCPI RHO

VALUE 7.52027 0.50747 0.00000

F= -39.773	FNEW= -73.025	ISQZ= 1 STEP= 0.50000	CRIT= 51.842
F= -73.025	FNEW= -82.677	ISQZ= 2 STEP= 0.25000	CRIT= 67.951
F= -82.677	FNEW= -83.922	ISQZ= 1 STEP= 0.50000	CRIT= 4.6590
F= -83.922	FNEW= -84.274	ISQZ= 0 STEP= 1.0000	CRIT= 0.60417
F= -84.274	FNEW= -84.308	ISQZ= 0 STEP= 1.0000	CRIT= 0.66564E-01
F= -84.308	FNEW= -84.309	ISQZ= 0 STEP= 1.0000	CRIT= 0.23462E-02
F= -84.309	FNEW= -84.309	ISQZ= 0 STEP= 1.0000	CRIT= 0.31674E-05
F= -84.309	FNEW= -84.309	ISQZ= 0 STEP= 1.0000	CRIT= 0.84382E-11

CONVERGENCE ACHIEVED AFTER 8 ITERATIONS

20 FUNCTION EVALUATIONS.

Dependent variable: LRGDP Current sample: 1 to 43 Number of observations: 43

Mean of dep. var. $= 9.26631$	Adjusted R-squared = .985058
Std. dev. of dep. var. = .339465	Durbin-Watson $= 1.20644$
Sum of squared residuals $= .069740$	Rho (autocorrelation coef.) = $.969356$
Variance of residuals = $.174351E-02$	Schwarz B.I.C. = -78.6676
Std. error of regression $= .041755$	Log likelihood = 84.3094
R-squared = .985769	

	Standard					
Parameter	Estimate	Error	t-statistic	P-value		
С	7.93007	.349316	22.7017	[.000]		
LCPI	.371462	.099601	3.72949	[.000]		
RHO	.969356	.038271	25.3285	[.000]		

Standard Errors computed from analytic second derivatives (Newton)

II. PART ON UNITED KINGDOM:

OLSQ estimation

Dependent Variable: LOG(RGDP) Method: Least Squares Date: 02/03/07 Time: 20:52 Sample: 216 258 Included observations: 43

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(CPI)	8.238253 0.275717	0.043281 0.013923	190.3427 19.80282	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.905345 0.903036 0.083550 0.286203 46.74909 0.130615	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	lent var criterion terion	9.057362 0.268312 -2.081353 -1.999437 392.1519 0.000000

Dickey-Fuller test

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG(RGDP)) Method: Least Squares Date: 02/03/07 Time: 20:56 Sample: 216 258 Included observations: 43

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(RGDP(-1)) C	-0.197877 1.789044	0.086276 0.782134	-2.293523 2.287388	0.0270 0.0274
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.113710 0.092093 0.154035 0.972794 20.44449 0.787263	Mean depen S.D. depend Akaike info Schwarz crit F-statistic Prob(F-statistic	ent var criterion terion	-0.003989 0.161658 -0.857883 -0.775967 5.260247 0.027016

Estimation of the new model

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG(RGDP),2) Method: Least Squares Date: 02/03/07 Time: 20:57 Sample: 216 258 Included observations: 43

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LOG(RGDP(-1)))	-1.022994	01100117	-6.552728	0.0000
C	-0.004071		-0.163159	0.8712

R-squared	0.511546	Mean dependent var	-0.000433
Adjusted R-squared	0.499632	S.D. dependent var	0.231244
S.E. of regression	0.163574	Akaike info criterion	-0.737701
Sum squared resid	1.097021	Schwarz criterion	-0.655785
Log likelihood	17.86058	F-statistic	42.93825
Durbin-Watson stat	1.012220	Prob(F-statistic)	0.000000

The estimation of the parameters with the AR1 command (TSP)

FIRST-ORDER SERIAL CORRELATION OF THE ERROR

Objective function: Exact ML (keep first obs.) Working space used: 947 STARTING VALUES

C LCPI RHO VALUE 8.23825 0.27572 0.00000

F= -46.749	FNEW= -80.026		
F= -80.026	FNEW= -89.539		
F= -89.539	FNEW= -90.492	ISQZ= 0 STEP= 1.0000	CRIT= 1.8161
F= -90.492	FNEW= -90.741	ISQZ= 2 STEP= 0.25000	
F= -90.741	FNEW= -90.952	ISQZ= 0 STEP= 1.0000	CRIT= 0.40125
F= -90.952	FNEW= -90.973	ISQZ= 0 STEP= 1.0000	CRIT= 0.36807E-01
F= -90.973	FNEW= -90.975	ISQZ= 0 STEP= 1.0000	CRIT= 0.35101E-02
F= -90.975	FNEW= -90.975	ISQZ= 0 STEP= 1.0000	CRIT= 0.37918E-04
F= -90.975	FNEW= -90.975	ISQZ= 0 STEP= 1.0000	CRIT= 0.46795E-08
F= -90.975	FNEW= -90.975	ISQZ= 0 STEP= 1.0000	CRIT= 0.71647E-16

CONVERGENCE ACHIEVED AFTER 10 ITERATIONS

25 FUNCTION EVALUATIONS.

Dependent variable: LRGDP Current sample: 216 to 258 Number of observations: 43

Standard

Paramete	r Estimate	Error	t-statistic	P-value
С	8.49604	.243088	34.9505	[.000]
LCPI	.170977	.062843	2.72068	[.007]
RHO	.987446	.020057	49.2313	[.000]

Standard Errors computed from analytic second derivatives (Newton)

REFERENCES

- Dickey, D. A.; Fuller, W. A. (1979). "Distribution of the Estimators for Autoregressive Time Series with a Unit Root". Journal of the American Statistical Association. 74 (366): 427–431. doi:10.2307/2286348. JSTOR 2286348.
- [2]. Enders, W. (2004). Applied Econometric Time Series (Second ed.). Hoboken: John Wiley & Sons. ISBN 0-471-23065-0.
- [3]. Campbell, J. Y.; Perron, P. (1991). "Pitfalls and Opportunities: What Macroeconomists Should Know about Unit Roots". NBER Macroeconomics Annual. 6 (1): 141–201. doi:10.2307/3585053. JSTOR 3585053.
- [4]. Dolado, J. J.; Jenkinson, T.; Sosvilla-Rivero, S. (1990). "Cointegration and Unit Roots". Journal of Economic Surveys. 4 (3): 249–273. doi:10.1111/j.1467-6419.1990.tb00088.x.
- [5]. Elder, J.; Kennedy, P. E. (2001). "Testing for Unit Roots: What Should Students Be Taught?". Journal of Economic Education. 32 (2): 137–146. doi:10.1080/00220480109595179.
- [6]. Hacker, R. S.; Hatemi-J, A. (2010). "The Properties of Procedures Dealing with Uncertainty about Intercept and Deterministic Trend in Unit Root Testing". CESIS Electronic Working Paper Series, Paper No. 214. Centre of Excellence for Science and Innovation Studies, The Royal Institute of Technology, Stockholm, Sweden.
- ^{[7].} Hacker, R. S. (2010). "The Effectiveness of Information Criteria in Determining Unit Root and Trend Status" (PDF). CESIS Electronic Working Paper Series, Paper No. 213. Centre of Excellence for Science and Innovation Studies, The Royal Institute of Technology, Stockholm, Sweden.
- [8]. Enders, Walter (2010). Applied Econometric Time Series (Third ed.). New York: Wiley. pp. 206–215. ISBN 978-0470-50539-7.
- [9]. Hatanaka, Michio (1996). Time-Series-Based Econometrics: Unit Roots and Cointegration. New York: Oxford University Press. pp. 48–49. ISBN 0-19-877353-6.
- [10]. Goldfeld, Stephen M.; Quandt, R. E. (June 1965). "Some Tests for Homoscedasticity". Journal of the American Statistical Association. 60 (310): 539–547.
- [11]. Kennedy, Peter (2008). A Guide to Econometrics (6th ed.). Blackwell. p. 116. ISBN 978-1-4051-8257-7.
- [12]. Kennedy (2008), p. 124
- [13]. Ruud, Paul A. (2000). An Introduction to Classical Econometric Theory. Oxford University Press. p. 424. ISBN 0-19-511164-8.
- [14]. Goldfeld & Quandt (1965), p. 542
- [15]. Cook, R. Dennis; Weisberg, S. (April 1983). "Diagnostics for heteroscedasticitiy in regression". Biometrika. **70** (1): 1–10. doi:10.1093/biomet/70.1.1. JSTOR 2335938.
- [16]. Thursby, Jerry (May 1982). "Misspecification, Heteroscedasticity, and the Chow and Goldfeld-Quandt Tests". The Review of Economics and Statistics. 64 (2): 314–321. JSTOR 1924311.
- [17]. Glejser, H. (March 1969). "A New Test for Heteroskedasticity". Journal of the American Statistical Association. 64 (325): 316–323. doi:10.1080/01621459.1969.10500976. JSTOR 2283741.
- [18]. Barro, Robert J. (1997), Macroeconomics (5th ed.), Cambridge: The MIT Press, ISBN 0-262-02436-5.
- [19]. Fisher, Irving (1977) [1930]. The Theory of interest. Philadelphia: Porcupine Press. ISBN 0-87991-864-0.
- [20]. Chatterjee, Samprit; Simonoff, Jeffrey (2013). Handbook of Regression Analysis. John Wiley & Sons. ISBN 1118532813.
- [21]. http://statisticalideas.blogspot.com/2014/05/serial-correlation-techniques.html
- [22]. Gujarati (2003) p. 469
- [23]. Durbin, J.; Watson, G. S. (1971). "Testing for serial correlation in least squares regression.III". Biometrika. 58 (1): 1–19. doi:10.2307/2334313.
- [24]. Farebrother, R. W. (1980). "Algorithm AS 153: Pan's procedure for the tail probabilities of the Durbin-Watson statistic". Journal of the Royal Statistical Society, Series C. 29 (2): 224–227.
- [25]. Hateka, Neeraj R. (2010). "Tests for Detecting Autocorrelation". Principles of Econometrics: An Introduction (Using R). SAGE Publications. pp. 379–82. ISBN 978-81-321-0660-9.
- [26]. "regress postestimation time series Postestimation tools for regress with time series"
- [27]. Bhargava, Alok; Franzini, L.; Narendranathan, W. (1982). "Serial Correlation and the Fixed Effects Model". Review of Economic Studies. **49** (4): 533–549. doi:10.2307/2297285.
- [28]. Durbin, J.; Watson, G. S. (1950). "Testing for Serial Correlation in Least Squares Regression, I". Biometrika. 37 (3–4): 409–428. doi:10.1093/biomet/37.3-4.409. JSTOR 2332391.
- [29]. Durbin, J.; Watson, G. S. (1951). "Testing for Serial Correlation in Least Squares Regression, II". Biometrika. 38 (1–2): 159–179. doi:10.1093/biomet/38.1-2.159. JSTOR 2332325.
- [30]. Gujarati, Damodar N.; Porter, Dawn C. (2009). Basic Econometrics (5th ed.). Boston: McGraw-Hill Irwin. ISBN 978-0-07-337577-9.

- [31]. Kmenta, Jan (1986). Elements of Econometrics (Second ed.). New York: Macmillan. pp. 328–332. ISBN 0-02-365070-2.
- [32]. Neumann, John von (1941). "Distribution of the ratio of the mean square successive difference to the variance". Annals of Mathematical Statistics. 12 (4): 367–395. doi:10.1214/aoms/1177731677. JSTOR 2235951.
- [33]. Sargan, J. D.; Bhargava, Alok (1983). "Testing residuals from least squares regression for being generated by the Gaussian random walk". Econometrica. 51 (1): 153–174. JSTOR 1912252.
- [34]. Verbeek, Marno (2012). A Guide to Modern Econometrics (4th ed.). Chichester: John Wiley & Sons. pp. 117–118.

OECD Economic Surveys: Canada 2006, Version: E-book (PDF Format) Publication date: 31 Jul 2006

Publisher: OECD Publishing

Pages: 144

Language: English

ISBN: 9789264025264

OECD Economic Surveys: United Kingdom 2007, OECD

27 Sep 2007

Pages: 154

ISBN: 9789264037731 (PDF) ;9789264037724(print)

DOI: 10.1787/eco_surveys-gbr-2007-en